Arsenic removal from water using flame-synthesized iron oxide nanoparticles with variable oxidation states.

نویسندگان

  • Aamir D Abid
  • Masakazu Kanematsu
  • Thomas M Young
  • Ian M Kennedy
چکیده

We utilized gas-phase diffusion flame synthesis, which has potential for large-scale production of metal oxide nanoparticles, to produce iron oxide nanoparticles (IONPs) with variable oxidation states. The efficacy of these materials in removal of arsenate (As(V) ) from water was assessed. Two different flame configurations, a diffusion flame (DF) and an inverse diffusion flame (IDF), were employed to synthesize six different IONPs by controlling flame conditions. The IONPs produced in the IDF configuration (IDF-IONPs) had smaller particle diameters (4.8 - 8.2 nm) and larger surface areas (141-213 m2/g) than the IONPs produced in the DF configuration (29 nm, 36 m2/g), which resulted in their higher adsorption capacities. As(V) adsorption capacities of the IDF-IONPs increased when the IONPs were synthesized in more oxidizing conditions. The fully oxidized IDF-IONPs, maghemite (γ-Fe2O3), showed the highest As(V) adsorption capacity, comparable to that of magnetite nanocrystals synthesized by thermal decomposition of iron pentacarbonyl and equivalent to three to four times higher capacity than that of a commonly used goethite-based adsorbent. All IONPs were magnetically responsive, which is of great importance for solid-liquid separation. This study demonstrates that the IONPs synthesized in gas-phase flame, particularly IDF-IONPs, are excellent adsorbents because of their high As(V) sorption capacity, potential for large-scale production, and useful magnetic property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of Mercury and Arsenic Metal Pollutants from Water Using Iron Oxide Nanoparticles Synthesized from Lichen Sinensis Ramalina Extract

Background & objectives: The import of heavy metals into various sources of drinking water supply is one of the major problems of water quality, especially in industrial areas. The aim of this study was to investigate the ability of mercury and arsenic metal pollutants to be removed from aqueous solutions using green oxide nanoparticles synthesized by green method. For this purpose, the extract...

متن کامل

Ultra-long Magnetic Nanochains for Highly Efficient Arsenic Removal from Water.

The contamination of drinking water with naturally occurring arsenic is a global health threat. Filters that are packed with adsorbent media with a high affinity for arsenic have been used to de-contaminate water - generally iron or aluminium oxides are favored materials. Recently, nanoparticles have been introduced as adsorbent media due to their superior efficiency compared to their bulk coun...

متن کامل

Synthesis and Characterization of Hybrid-Magnetic Nanoparticles and Their Application for Removal of Arsenic from Groundwater

Multiwall carbon nanotubes (MWCNTs) were oxidized with different agents and a characterization study was carried out. Then, hybrid-magnetic nanoparticles (HMNPs) were synthesized as iron oxide supported on the selected multiwalled carbon nanotubes (MWCNTs-Fe₃O₄) obtained from MWCNTs oxidized with HNO3. The HMNPs characterization revealed the presence of iron oxide as magnetite onto the MWCNTs s...

متن کامل

امکان‌ سنجی استفاده از نانوذرات پراکسید کلسیم در حذف آرسنیک III  از آب­‌های آلوده در کشاورزی و تاثیر آن بر پارامترهای کیفی آبیاری 

MicrosoftInternetExplorer4 Background and Objectives: Arsenic is one of the most toxically contaminants in groundwater and soils. Due to the ability of bio-accumulation of arsenic III in plants through irrigation with contaminated water and its entrance to the food chain, irreparable hazards would be caused. The aim of this research is the feasibility study of arsenic III removal from poll...

متن کامل

Removal of Cd (II) in Water Samples Using Modified Magnetic Iron Oxide Nanoparticle

Background: Heavy metals, even at low concentrations, are harmful to human health and environment. Cadmium as a heavy metal is highly toxic and can cause serious threat to living organisms. This research was designed to evaluate the adsorption potential of modified magnetic iron nanoparticles by 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol ligand for the removal of cadmium ions from water solu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Aerosol science and technology : the journal of the American Association for Aerosol Research

دوره 47 2  شماره 

صفحات  -

تاریخ انتشار 2013